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Abstract

The human body is an incredible and complex sensing system. Envi-
ronmental factors trigger a wide range of automatic neurophysiological
responses. Biometric sensors can capture these responses in real time,
providing clues to the underlying biophysical mechanisms. Here we show
biometric variables can be used to accurately estimate ultra-local particu-
late matter concentrations in the ambient environment with high fidelity
(r2 = 0.91) and that smaller particles are better estimated than larger
ones. Inferring environmental conditions solely from biometric measure-
ments allows us to disentangle key interactions between the environment
and the body. A deeper understanding of these interactions can have
countless important applications in public health, preventative health-
care, city planning, human performance, and much more. By tapping into
our body’s ‘built-in’ sensing abilities, we can gain insights to how our
environment influences our physical health and cognitive performance.
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1 Introduction

Over 4 million premature deaths worldwide were attributed to outdoor air
pollution in 2016 [1]. In 2019, 99% of the global population resided in areas
that fell short of the World Health Organization (WHO) air quality guidelines
[1]. There has been mounting evidence that poor air quality negatively impacts
respiratory, cardiovascular, and cerebrovascular health [2–7]. Further, there is
emerging evidence on the impact of poor air quality on neurological outcomes
including chronic diseases (e.g. Alzheimer’s disease and dementia) [2, 8, 9] and
acute cognitive impairment [10–14].

Although several large-scale epidemiological studies show the negative
effects of air pollution on physical and cognitive health [2–7], these studies
largely focused on coarse spatial (∼10 miles) and temporal (∼1 day) scales.
Much less research focuses on ultra-local spatial (∼1 m) and temporal (∼10
seconds) scales that make simultaneous environmental and holistic biometric
observations of the human physiological responses.

Before an extreme result such as a disease occurs, poor air quality
already negatively impacts human physical and cognitive performance [10–14].
Through this work, we investigate how air pollution impacts human per-
formance by examining the relationship between environmental air quality
measurements and automatic physiological responses at ultra-fine scales.

This study extends past works that examined interactions of cardiovas-
cular variables such as heart rate (HR), heart rate variability (HRV), and
blood pressure (BP) with air quality on fine scales [15–17]. The main contri-
bution of this study is that we augment cardiovascular markers with other
biometrics, including electroencephalography (EEG), pupillometry, galvanic
skin response (GSR), body temperature, blood oxidation, and respiration rate.
This extended set of variables provides insight into both the cardiovascular
and cognitive status of the participant. A study of air quality and human phys-
iology at the ultra-local level may shed light on the biophysical mechanisms
that underlie their interactions.

2 Results

In this work we used a data-driven experimental paradigm to develop and
explore several empirical machine learning models which describe the con-
nection between ambient air particulate matter (PM) concentrations and the
biometric variables of an individual breathing that air. Due to logistical con-
straints imposed by the COVID-19 pandemic, we were only able to collect
data from one participant. Additional participants will be included in future
research. Two factors, however, mitigate the limited population size in this
study. First, the data collection took place over three days, which allowed
for contextual variability. Furthermore, the participant repeatedly circled the
same trail, allowing for multiple observations of identical spatial positions and
360-degree changes in wind direction angles.
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The estimated PM values included: PM1, PM2.5, PM4, PM10, PMTotal,
and 45 different PM size bins ranging of 0.18 – 10 µm measured in µg/m3, as
well as particle count density (dCn) measured in particles per m3. For model
development, 329 biometric predictor variables were available. Two subsets of
9 biometric predictor variables were used in training a set of empirical machine
learning models. The first subset includes EEG variables, and the second subset
does not. The cognitive effects of air quality can be identified by evaluating
predictive models with and without EEG values.

Each machine learning model used was a trained ensemble of decision trees
for multi-variate non-linear non-parametric regression with full hyperparam-
eter optimization [18–23]. The empirical models are evaluated using two key
metrics. First, the model accuracy assessed using the squared correlation coef-
ficient (r2) between the model prediction and the true PM values. Second,
a ranking of predictor variable importance obtained as the weighted average
importance of each predictor across the ensemble.

We first evaluated the six machine learning models for particulate mat-
ter (PM) values which estimated: the particle count density (dCn), PM1,
PM2.5, PM4, PM10, and PMTotal. 329 biometric predictor variables were used
as model inputs including: delta (1 – 3 Hz), theta (4 – 7 Hz), alpha (8 – 12
Hz), beta (13 – 25 Hz), and gamma (25 – 70 Hz) band power densities for each
of the 64 EEG electrodes, body temperature, galvanic skin response (GSR),
heart rate (HR), heart rate variability (HRV), respiration rate (RR), periph-
eral capillary blood oxygen saturation (SpO2), average pupil diameter, the
difference between the left and right pupil diameters (anisocoria), and the 3D
spatial distance between the left and right pupil centers (vergence eye move-
ment). Then, using an Occam’s razor principle, the top 9 important biometric
predictor variables were used to train an additional six models for the same
PM variables.

The best performing model using the top 9 EEG and non-EEG biometric
predictors was for PM1. This model had the highest accuracy with a validation
dataset r2 = 0.91. Comparison plots between estimated and ground truth PM1

values are given in Figure 1. In the top-left plot, the estimated and true PM1

concentrations in both the training (blue circles) and validation (red pluses)
datasets closely follow to the perfect fit (black) line. In the top-right plot, the
quantile-quantile comparison shows the distribution of measured PM1 values
closely resembles the distribution of estimated PM1 values. Finally, in the
bottom plot, the time series of the estimated PM1 values (dashed red line)
tracks very closely to the true values (solid black line) over seven different
trials spanning three separate days.

The performance of the PM1 and five other PM models in this cohort are
ranked in the left panel of Figure 2. The training and independent valida-
tion dataset performances are plotted in blue and orange, respectively, and
sorted in descending order of independent validation performance. As pre-
viously discussed, PM1 measured in µg/m3 was best reproduced by the 9
biometric predictors (validation r2 = 0.91). The empirical models based on
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Fig. 1 Top performing model (PM1) plots comparing predict and ground truth values.
(Top− Left) scatter plot of true versus predicted PM1 values. A perfect fit is indicated
by the 1:1 line shown in black. Training data are shown as blue circles and validation
data are plotted as red pluses. (Top−Right) quantile-quantile plot of true versus predict
PM1 values. Identical true and predicted distributions would results in a perfect y=x line.
(Bottom) Time series plot of true PM1 values (solid black line) and predicted PM1 values
(dashed red line).

the same biometric predictors were less able to accurately estimate the larger
PM10 (validation r2 = 0.67) values and PMTotal (validation r2 = 0.72) which is
dominated by PM10 due to the larger masses. The poor performance of these
models could be explained the fact that there are significantly fewer large par-
ticles than small particles, and thus the larger particles are not as well mixed
as the far more numerous and well mixed smaller particles. Because of their
greater bulk, larger particles settle more quickly. As a result, the concentra-
tions of large particles collected by the survey vehicle and those inhaled by
the subject a few meters away are likely to differ more than for the smaller
particles. Second, it’s possible that the larger particles have less of an impact
on the participant’s physical and cognitive state because they are less likely to
penetrate deeply into the respiratory and circulatory systems [26].

Each of the six empirical machine learning models has an associated predic-
tor importance ranking, which quantifies the role of individual input predictor
variables in estimating the respective PM target variable. The aggregated rank-
ing of top predictors, shown in the right plot in Figure 2, elucidates which
biometric variables are most helpful to the empirical models in discerning PM
values. The most important predictor variable in estimating PM values was
the body temperature measured at the participant’s right temple. Surprisingly,
the respiratory variable HRV played less of a role. Other important biometrics
included GSR and the distance between the pupil centers of the eyes. GSR is
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Fig. 2 Summary of empirical PM concentration models estimated from 9 EEG and non-
EEG biometric predictor variables. (Left) Ranking of model performance defined as squared
correlation coefficient between predicted and true PM values. Training and validation dataset
performances for each model are shown in blue and orange, respectively. Sorting is based on
validation dataset performance. Overlaid graphics indicate the deposition of the respective
PM size bins in the airways [26]. (Right) Predictor importance ranking aggregated across
all 6 models.

Fig. 3 Correlation plot of top 9 EEG and non-EEG biometric predictor variables, along
with 6 target PM variables. Positively correlated variable pairs are indicated by a red box,
negatively correlated pairs are shown by blue boxes, and non-correlated pairs have green
boxes.

a strong correlate of body temperature. While the distance between the pupil
centers is a proxy for vergence eye movements, which have been associated
with attentional load and to be a strong predictor of cognitive status [24, 25].
EEG variables found to play an important role in estimating PM values were
the delta band (1 – 3 Hz) power densities for the FC6, T8, and Oz electrodes.
FC6 is above the frontal cortex on the right side of the head, T8 corresponds
to the right temporal lobe, and Oz sits on top of the primary visual cortex.

Correlations between predictor and target variables are visualized as a color
filled correlation plot in Figure 3. As seen by the red-orange streaks in the
bottom-left and top-right of the correlation plot, HRV, GSR, temperature,
and the delta power density of the Oz and PO7 electrode signals have strong
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Fig. 4 (Left) Histograms of 9 EEG and non-EEG predictor variables. Plots are titled by
variable name and its physical units. (Right) Histograms of 6 different PM target variables
variables. Plots are titled by variable name and its physical units.

Fig. 5 Summary of empirical PM concentration models estimated from 9 non-EEG biomet-
ric predictor variables including eye tracking, respiratory, and other physiological variables.
(Left) Ranking of model performance defined as squared correlation coefficient between pre-
dicted and true PM values. Training and validation dataset performances for each model are
shown in blue and orange, respectively. Sorting is based on validation dataset performance.
Overlaid graphics indicate the deposition of the respective PM size bins in the airways [26].
(Right) Predictor importance ranking aggregated across all 6 models.

positive correlations with all target variables except PMTotal. In other words, as
these predictor variables increase, so do the corresponding PM target variables.
PM target variables show the greatest negative correlation with the 3D spatial
distance between left and right pupil centers. Suggesting that the pupils tend
to converge with an increase in PM concentrations. Lastly, of all the target
variables, PMTotal is most strongly correlated with PM10 values, which reflects
the strong contribution of PM10 particles to PMTotal.

Histograms for both predictor and target variables are displayed in
Figure 4. Plots are titled by the variable name and its respective physical
units. From the target PM variable histograms in the right plot of Figure 4,
the mass scales of different particle sizes are evident. Namely, the larger sized
PM10 particles vary over a much larger range (0 – 40 µg/m3) than the smaller
PM4 (0 – 20 µg/m3), PM2.5 (0 – 15 µg/m3), and PM1 particles (0 – 8 µg/m3).
This further explains the strong influence of PM10 values on PMTotal.

Next, an additional set of six empirical machine learning models for the
same set of PM targets (dCn, PM1, PM2.5, PM4, PM10, and PMTotal) were
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Fig. 6 Model accuracies plotted against bin size. 45 separate PM models were trained for
size bins ranging from 0.18 to 10 micrometers. PM values were estimated solely from 9
non-EEG biometric variables. Training dataset performance is plotted as a blue line and
validation dataset performance is plotted in orange. A clear drop in model performance
is observed between 2 – 3 micrometers. Overlaid graphics indicate the deposition of the
respective PM size bins in the airways [26, 27].

evaluated, except this time the PM targets were estimated from 9 non-EEG
biometric predictor variables (body temperature, GSR, HR, HRV, RR, SpO2,
average pupil diameter, difference between left and right pupil diameters, and
the 3D spatial distance between left and right pupil centers).

The model performance ranking for the six empirical PM models estimated
from the 9 non-EEG biometric predictor variables is shown in the left panel
of Figure 5. We see that the smaller particles are better estimated by the non-
EEG biometrics. Again, this result may be due to better mixing of smaller
particles or to deeper penetration of those particles into the respiratory system
or both.

Comparing the performance rankings in Figure 2 and Figure 5, there are
clear changes in model accuracies. All models with the exception of PM4

exhibit a drop in performance. The largest drop occurs for the already poor
performing PMTotal (drop in validation r2 = 0.47) and PM10 (drop in validation
r2 = 0.28) models.

There is overlap between the importance rankings of Figure 2 and Figure 5.
In both cases, body temperature is the most significant predictor of the PM
values. Additionally, GSR maintains its order in the ranking as the 2nd most
important non-EEG predictors. Although respiratory variables such as HRV
and HR appear in the top six of the importance ranking, these variables trail
behind temperature, GSR, and the distance between the eye pupil centers.
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Fig. 7 Data collection images. (Left) Custom made backpack to house biometric devices
and recording computer. (Middle) Participant and environmental survey vehicle riding in
tandem during data collection. (Right) Environmental sensors organized in trunk of electric
survey vehicle.

The observation that smaller particles are better estimated than larger
sized particles, is explored further by evaluating model performances for finer
scaled size bins. Here, 45 models were trained to estimate different PM size
bins ranging from 0.18 to 10 micrometers using the 9 non-EEG biometrics
listed above. Model accuracy is plotted against bin size in Figure 6. Training
and validation accuracies are plotted as blue and orange lines, respectively.
The regional depositions of each particle size bin is indicated by a label and
background shading [26, 27]. The smallest particles (PM1) are classified as
respirable and can penetrate to the alveoli. The next smallest size bin is tho-
racic (PM2.5) which consists of particle penetrating into the bronchioles. The
largest size bin are the inhalable particles (PM10) which can enter into the
nose, mouth, and trachea.

There is a clear drop in both training and validation dataset accuracies for
size bins between 2 to 3 micrometers, corresponding to thoracic and inhalable
particles. For particle size bins above this drop, there is large degree of variation
in model performances, however most have poor performance with a validation
r2 below 0.4. While the results may imply that smaller particles have a greater
impact on physiological systems due to their deeper deposition, that conclusion
cannot be reached based upon the present data. The drop in performance for
larger particles may be explained in part or completely by the fact that smaller
particles are more plentiful and better mixed. An evaluation of the relative
contributions of each of these factors requires further investigation.

3 Materials & Methods

3.1 Holistic Sensing

The data in this study are a subset of a holistic biometric and environmental
sensing paradigm. The aim of holistic sensing is to capture all relevant infor-
mation about a system of interest. The full sensor array includes biometric
monitors such as: electroencephalography (EEG), eye tracking glasses, electro-
cardiography (ECG), galvanic skin response (GSR), body temperature, blood
oxygen saturation, and heart rate (Figure 8), in addition to environmental
factors such as: particulate matter, chemical composition of air, temperature,



Springer Nature 2021 LATEX template

Decoding Physical and Cognitive Impacts of PM Concentrations at Ultra-fine Scales 9

Fig. 8 Biometric sensing systems. (Left) Tobii Pro Glasses 2 eye tracking system. This
instrument performs eye tracking data, pupillometry, and provides two videos streams of
the participant’s POV and eyes, respectively. (Right) Cognionics Mobile-64 and AIM2
systems. Sensing suite includes 64-electrode EEG, PPG which measures SpO2 and HR,
respiration/ECG sensors, GSR, and temperature probe.

pressure, humidity, visible light spectrum, and more (Figure 9). After process-
ing raw sensor recordings, the full sensor array has a feature space approaching
20,000 variables (∼16,500 biometric and∼2,000 environmental). In the present
study we focus on a relatively small subset, consisting of 329 biometric and 51
environmental variables.

The biometric sensing suite used in this research aims to comprehensively
capture the physiological and cognitive status of the participant, without
restricting the participant’s actions, movements, or decision making. The goal
is to gather the maximum amount of information with minimal interruption
of normal behaviors. Biometric sensors are placed on the participant in such
a way to allow for unrestricted mobility (Figure 10). Sensor recording units
and other devices are organized in a backpack worn by the participant that all
together weighs less than 10 lbs (Left panel in Figure 7).

Over 100 biometric markers are measured at sampling rates of 500 Hz and
100 Hz. These quantities are processed to derive over 329 variables for the
present analysis. This holistic biometric sensing suite integrates two indepen-
dent sensing systems (Figure 8). Eye tracking is recorded 100 times a second
using the Tobii Pro Glasses 2. Data from the glasses produced average pupil
diameter, the difference in pupil diameter between left and right eyes, and the
3D spatial distance between pupil centers. All other biometric data are mea-
sured 500 times a second using the Cognionics Mobile-64 and AIM2 systems.
These systems include a 64-electrode EEG, temperature sensor, respiration
sensor, Photoplethysmogram (PPG), and galvanic skin response (GSR) mea-
surement. Heart rate and SpO2 values are automatically computed by the
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Fig. 9 Images of environmental sensing systems. Fidas® Frog Fine Dust Monitoring Sys-
tem measures particulate matter concentrations at 100 different size bins. The AIRMAR
220WX WeatherStation® Instrument samples barometric pressure, wind speed and direc-
tion, ambient temperature, and more. The 2B Technologies Black Carbon Photometer
measures atmospheric black carbon particulates using long-path photometry. The 2B Tech-
nologies Model 205 Dual Beam Ozone sensor is a UV-based ozone monitor. The Konica
Minolta CL-500A Illuminance Spectrometer measures the spectral irradiance from 360 to
780 nm at every nanometer. The portable mass spectrometer was constructed by the UNT
Laboratory of Imaging Mass Spectrometry and measures charge mass ratios ranging 1 - 300
amu. The 2B Technologies Model 405 nm NO2/NO/NOx Monitor™ directly measures atmo-
spheric Nitrogen Dioxide (NO2) and Nitric Oxide (NO). The LI-COR LI-850 Gas Analyzer
measured CO2 and water vapor in the air.

Fig. 10 Schematic of biometric sensor placement on participant. (Left) Cartoon of front
participant view. The 64-electrode EEG sits on the participant’s head. A temperature probe
is placed under the EEG cap on the right temple. Eye tracking glasses are carefully placed
on participant, avoiding EEG electrodes. PPG sensor is secured to left ear lobe. Respiration
sensors are place near the top of the chest. (Right) Cartoon of back participant view. GSR
sensors are placed below the back of the neck.

AIM2 system using the PPG. Heart Rate Variability (HRV) and Respira-
tion Rate (RR) values are derived from respiration sensor data with a custom



Springer Nature 2021 LATEX template

Decoding Physical and Cognitive Impacts of PM Concentrations at Ultra-fine Scales 11

MATLAB script. All biometric data were down-sampled to 1/30 Hz (every 30
seconds) to match particulate matter recordings.

A holistic evaluation of an environmental setting is the ultimate goal of the
environmental sensing suite used in these studies. This suite brings together
several sensing packages (Figure 9). However, due to its significant societal
relevance, for this study we focus on particulate matter (PM) concentrations
recorded using the Fidas® Frog fine dust monitoring system. This instrument
simultaneously measures PM mass fractions of PM1, PM2.5, PM4, PM10, and
a size distribution within a size range of 0.18 - 100 micrometers as well as the
total particle count density (dCn). PM data was recorded at sampling rate of
1 Hz and down-sampled to 1/30 Hz (every 30 seconds).

3.2 Data Collection

Biometric data collection was restricted to a single participant due to logisti-
cal constraints arising from the COVID-19 pandemic. However, future works
will include data from multiple participants. The small population size in the
present study is mitigated by two factors. First, data was collected over three
separate days, providing a range of contexts. Additionally, the participant cir-
cled the same trail multiple times, offering multiple observations of identical
positions and 360-degree changes in wind direction angles.

Data were collected while the participant rode a bicycle in a dynamic out-
door setting. An electric survey vehicle equipped with a suite of environmental
sensors followed safely behind the participant during all rides (Middle image
in Figure 7. Although several dimensions of the environmental context were
sampled (e.g. ambient light, temperature, pressure, mass spectra, etc.), here
we focus on the relationship between particulate matter values and biometric
variables. Additional relationship will be explored in future works.

Data collection took place in May and June of 2021 at Breckenridge Park
located in Richardson, TX over three separate days which included four to
five trials per day. The first two trials consisted of two minutes of eyes closed
and eye open baseline biometric measurements, respectively. The third trial
consisted of a “warm-up” ride, where the participant cycled to a public bike
trail in tandem with the electric survey vehicle. Additional trials consisted of
the participant repeatedly cycling a one-mile loop on a public bike trail. The
participant was free to stop cycling at their discretion. Data collection was
halted whenever cycling stopped. If the participant chose to continue, a new
data collection trial was initiated.

The complete dataset consists of 188 data records collected every 30 seconds
(total time of about 1.5 hours) with 329 biometric predictor variables and 51
PM target variables. Biometric predictor variables include: delta (1 – 3 Hz),
theta (4 – 7 Hz), alpha (8 – 12 Hz), beta (13 – 25 Hz), and gamma (25 – 70 Hz)
band power densities for each of the 64 EEG electrodes, body temperature,
GSR, HR, HRV, RR, SpO2, average pupil diameter, difference between left and
right pupil diameters, and the 3D spatial distance between left and right pupil
centers. Environmental PM target variables include: PM1, PM2.5, PM4, PM10,
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PMTotal, and 45 different PM size bins ranging of 0.18 – 100 µm measured in
µg/m3, as well as particle count density (dCn) measured in P/cm3. The data is
made publicly available at the Zenodo datastore: https://zenodo.org/record/
6326357#.Yieu4RPMJb8.

Ethical approval declarationsAll experimental protocols were approved
by The University of Texas at Dallas Institutional Review Board and informed
consent was obtained from the study participant.

3.3 Model Development

All models of PM concentration are obtained by an ensemble of decision trees
for regression with a hyperparameter optimization process [18–23]. 90% of
the data is used for training, while 10% is help back as an independent vali-
dation dataset. Scripts for model training are freely available at the GitHub
repository: https://github.com/mi3nts/DUEDARE.

4 Conclusion

The human body and environment form a complex ecosystem. A key aspect
of this system is air quality and the effects it has on our bodies. Environ-
mental factors trigger physiological responses that can be detected by holistic
biometric sensing. Here we used an ultra-fine holistic sensing paradigm to
show particulate matter concentrations in the ambient environment can be
accurately estimated using only nine biometric variables. In addition, smaller
particles were found to be more accurately estimated. Two potential causes
may explain this result. First, smaller particles are much more abundant and
well mixed in the ambient environment than larger ones, thus resulting in a
greater similarity between particles inhaled by the participant and collected
by the survey vehicle. Secondly, smaller particles can deposit into the respira-
tory system more deeply, and may have a greater impact on the body. Further
investigation is needed to assess the relative contributions, if any, of these two
factors, since they are not mutually exclusive.

Although the present work shows preliminary findings from a single par-
ticipant over multiple days, future research will include data from multiple
participants. Additionally, several other variables collected (e.g. ambient light,
temperature, pressure, mass spectra, etc.) will be evaluated for their phys-
iological interactions. By understanding the key interactions between the
environment and the human body, health and performance can be improved
across many different domains.

Supplementary information. The data and code has been made pub-
licly available. The full data set is available at the Zenodo data store: https:
//zenodo.org/record/6326357#.Yieu4RPMJb8 and code is available at the
GitHub: https://github.com/mi3nts/DUEDARE.

https://zenodo.org/record/6326357#.Yieu4RPMJb8
https://zenodo.org/record/6326357#.Yieu4RPMJb8
https://github.com/mi3nts/DUEDARE
https://zenodo.org/record/6326357#.Yieu4RPMJb8
https://zenodo.org/record/6326357#.Yieu4RPMJb8
https://github.com/mi3nts/DUEDARE
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